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Introduction: Why are warm rain clouds important?
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“» Climate model reproduces the correct temperature trend only with flawed model physics.



Introduction: Why are warm rain clouds important?

Dreary state of precipitation in global models
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and John Haynes®

Received 25 May 2010; revised 7 September 2010; accepted 21 September 2010; published 21 December 2010.

[1] New, definitive measures of precipitation frequency provided by CloudSat are used to
assess the realism of global model precipitation. The character of liquid precipitation
(defined as a combination of accumulation, frequency, and intensity) over the global
oceans is significantly different from the character of liquid precipitation produced by
global weather and climate models. Five different models are used in this comparison
representing state-of-the-art weather prediction models, state-of-the-art climate models,
and the emerging high-resolution global cloud “resolving” models. The differences
between observed and modeled precipitation are larger than can be explained by
observational retrieval errors or by the inherent sampling differences between observations
and models. We show that the time integrated accumulations of precipitation produced by
models closely match observations when globally composited. However, these models
produce precipitation approximately twice as often as that observed and make rainfall far
too lightly. This finding reinforces similar findings from other studies based on surface
accumulated rainfall measurements. The implications of this dreary state of model
depiction of the real world are discussed.

Citation: Stephens, G. L., T. L’Ecuyer, R. Forbes, A. Gettlemen, J.-C. Golaz, A. Bodas-Salcedo, K. Suzuki, P. Gabriel, and
J. Haynes (2010), Dreary state of precipitation in global models, J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

*» Detailed observations of microphysical processes in real clouds is needed to
improve models.



Introduction: How does warm rain form?

** The warm rain formation process generally starts by condensation. Once the
particle becomes large enough, the coalescence process begins.
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Optical Depth
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Method: Contour Frequency of Optical Depth Diagram (CFODD)

Cloud top particle size
5-10um (MODIS)

o
S
™

N
o

0¢-

0

[ 0 J
Oan
o

1
Reflectivity (dBZ)
CloudSat CPR

Optical depth (a measure of how opaque a cloud is):
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where T_is total optical depth, and H is geometric
thickness (Suzuki et al., 2010).

This equation is derived based on the concept of the adiabatic-condensation growth model
(e.g., Brenguier et al., 2000; Szczodrak et al., 2001).
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Method: Contour Frequency of Optical Depth Diagram (CFODD)
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Method: Contour Frequency of Optical Depth Diagram (CFODD)

cloud top particle size

5-10pm 10-15pm
cloud I w As cIoud.s age, cloud
. top particles grow
S
o
- A T
B N
o » S
0
© O
E = o
(O
@)
o [0
Su
o

1
Reflectivity (dBZ)
CloudSat CPR

cloud mode (<-15dBZ) =» drizzle mode (>-15dBZ & <0dBZ) =» rain mode (>0dBZ)



Method: Contour Frequency of Optical Depth Diagram (CFODD)

cloud top particle size
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Method: Contour Frequency of Optical Depth Diagram (CFODD)
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Results: Land-Ocean Differences in CFODD (2007-2010)

cloud top particle size
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Results: Land-Ocean Differences in CFODD (2007-2010)
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Particles start to fall sooner over ocean.
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Results: Land-Ocean Differences in CFODD (2007-2010)

cloud top particle size
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*»  Particles start to fall sooner over ocean.

“* A “drizzle gap” can be seen over land.



Results: Land-Ocean Differences in CFODD (2007-2010)
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“* A “drizzle gap” can be seen over land (drizzle suppression).



Hypothesis: The land-ocean differences are due to the land-ocean differences in the
intensity of updraft (Nakajima et al, 2010).
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“» Particles start to fall sooner over ocean.

*» A “drizzle gap” can be seen over land (drizzle suppression).



Results: Stratocumulus vs. Cumulus over Ocean
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Testing Our Hypothesis I: A-Train Observation over Ocean (2007-20010)

Cloud top particle size: 15-20pum
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Testing Our Hypothesis Il: ARM Observation, Azores Portugal (2009-2010)

Cloud top particle size: 15-20pum
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*»  Doppler velocity is the sum of both the updraft and the falling drop velocities.
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“*  However, knowing the reflectivity and Doppler upward motion together provides a
clearer index of upward strength.
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“»  “Drizzle gap” starts to appear when Doppler velocity is stronger.



Testing Our Hypothesis Il : Bin Microphysics Model Simulation
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»  Particles start to fall sooner over weak updraft.

S

»  Physical model confirmed the nature of the “drizzle gap”.



LTS dependence in GCMs ( Re: 15-20um)
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Land-Ocean Difference in GCMs ( Re: 15-20um)
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Summary

Observations expose the land-ocean differences in the warm rain
formation process.

= Environmental condition(e.g., intensity of updraft ) plays a key
role in the warm rain formation process.
GCMs do not expose the land-ocean differences.

=  There is little link between environmental condition and cloud
microphysics.

Reference:
Takahashi, H., Suzuki, K., & Stephens, G. (2017). Land—ocean differences in the warm-rain formation
process in satellite and ground-based observations and model simulations. Quarterly Journal of the
Royal Meteorological Society, 143(705), 1804-1815. DOI:10.1002/qj.3042

Thank you!




Introduction: What are warm rain clouds? How does warm rain form?

“* Warm rain clouds are clouds whose cloud top temperatures are above 0°C.

“» The warm rain formation process generally starts by condensation. Once the
particle becomes large enough, the coalescence process begins.
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Introduction: Why are warm rain clouds important?

** The cloud-drizzle-rain processes in warm clouds play a key role in controlling the
hydrologic cycles and energy budgets.

=  Warm rain clouds are responsible for ~30% of the total rainfall in the Tropics.

=  Warm rain clouds strongly reflect solar radiation back to space.

*» Climate projections are very sensitive to the warm-rain formation process.
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Hypothesis: The land-ocean differences are due to the land-ocean differences in the

intensity of updraft (Nakajima et al, 2010).
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*»  Particles start to fall sooner over ocean.

“»  Drizzle suppression can be seen over land.



Testing Our Hypothesis Il : ARM Ground-Based Measurement
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* Doppler velocity is the sum of both the updraft and the falling drop velocities.

* However, knowing the reflectivity and Doppler upward motion together provides a clearer
index of upward strength.



